
! :

=

N94- 25195

Y- 7
Abstract:

Conventional processes often produce systems which are obsolete before they are fielded. This

paper explores some of the reasons for this, and provides a vision of how we can do bet- =

ter. This vision is based on our explorations in improved processes and system/software

engineering tools.

m

_3

w

w

_q

=

E
w

1 Introduction

Over the past seven years our Signal Processing Center of Technology and in particular our

Rapid Development Group (RDG) has been vigorously developing and applying approaches

for complexity management and rapid development of complex systems with both hardware

and software components. Specifically, we have created laboratory prototypes which demon-

strate broad-based system requirements management support and we have applied key rapid

development methodologies for the production of signal processors and signal exploitation

systems such as electronic countermeasures systems, signal classifiers, and factory floor test

equipment.

As a component of this thrust, we have developed prototype tools for requirements/specification

engineering. Recently on the "Requirements/Specification Facet for KBSA" project, Lock-

heed Sanders and Information Sciences Institute built an experimental specification envi-

ronment called ARIES [5] 1 which engineers may use to codify system specifications while

profiting from extensive machine support for evaluation and reuse. As part of this project

we have developed databases of specifications for signal processing components, for electronic

warfare techniques and tests, and for tracking and control within the domain of air traffic

control. ARIES is a product of the ongoing Knowledge-Based Software Assistant (KBSA)

program. KSSA, as proposed in the 1983 report by the US Air Force's Rome Laboratories

[3], was conceived as an integrated knowledge-based system to support all aspects of the

software life cycle.

The key aspects of our multi-faceted approach build on advances in architectures which

support hybrid systems (i.e., mixes of pre-existing subsystems and new development) and

tool developments addressing automation issues at higher and higher abstraction levels.

With these changes taking place, there are many opportunities for improving engineering

processes, but several obstacles to be overcome as well.

We begin with a brief discussion of the fundamental problems inherent in the "conventional"

system development process. The well-documented reasons for long development cycle times

inherent in the conventional development processes are many and varied. Four significant

1ARIES stands for Acquisition of Requirements and Incremental Evolution of Specifications.

2

,,.

w

_ Activity N+I

Activity N

Activity N- 1

T O

(a) Current Sequential Process:
• Manual Transfer of Data

• Umited and Late Feedback

.------------ All Contribute to "Lost" Time ---

• ' m
I

I •

m

I •

Time

w

L_

= =

!W

INI

Figure 1: The conventional development cycle as a collection of discrete steps

problems characterize the state of the practice: early commitments under uncertainty, iso-

lated design activity, performance-orientation, and process control rather than observation.

All lead to long and costly development cycles.

Forced Early Commitments

The conventional development cycle is really a collection of discrete sequential steps

(see Figure 1). Each step establishes a baseline and entails specific commitments. To

reduce schedule risk, engineers freeze implementation choices as early as possible -

prior to partitioning of design tasks to members of a development team. For example,

engineers may prematurely select a CPU, sensor component, or algorithm. Frequently,

a decision to commit to a particular implementation strategy is made before the system

requirements have been fully analyzed and understood.

To ameliorate the effects of unforeseen, or poorly understood, requirements, system en-

gineers impose design margins (e.g., extra memory, extra throughput, stringent power

and size restrictions). The rationale behind these margins being that some physical

components will exceed expectations and some unforeseen problems can be corrected

by writing new software which crosses physical system boundaries. Unfortunately, to

w

=

L_

m
m

m

w

w

=-

w

L_
mt

m
w

W

w

=

=

w

achieve the margins mandated, engineers frequently introduce additional technical and

schedule risk since now the required capabilities push even harder against the edge of

achievable performance, power, and packaging.

If a surprise requirement is uncovered and the corrective action of utilizing software

which will achieve the design margins is invoked, this often occurs late in the devel-

opment cycle when typically the program is fully staffed and at the most expensive

portion of its costing profile. Consequently, even minor corrective actions can have

dramatic cost and schedule impacts.

Isolated Design Activities

Engineers are often isolated from the design impact on production, and on fielded sys-

tem maintenance, support, and upgrade. Upstream design is isolated from downstream

activity. The feedback loop from design to manufacturing and back to design usually

takes several days.

Producibility guidelines, available on paper, and to a limited extent in advisor software

packages, help engineers avoid only the most obvious pitfalls such as exceeding bounds

on chip size.

The cost estimation tools available today (e.g., RCA's PRICE TM, Analytic Sciences

Corporations 's LCCA _'') are not tightly integrated with the design process. These

estimation tools derive cost from abstract parametric data (e.g., team experience and

quality, mean time between failure, repair time, module cost, support equipment cost,

number of spares).

In reality, the situation is quite a bit more complex. Engineers are not always aware

of the relationship between abstract parameters and specific design decisions. Alter-

native designs can vary greatly in their production cost and what appears to be an

arbitrary decision to a engineer can have serious cost impact downstream. In addition,

engineers are often "backed into a corner" by stringent performance requirements (i.e.,

the margins mentioned above) that can only be achieved through a "custom" approach

which violates a guideline. Engineers need to know the sensitivity of custom solutions

to manufacturability and testability.

Closer collaboration among engineers, in-house manufacturing engineers, testing ex-

perts, purchasing departments, external foundries, and logistic engineers will clearly

improve the process. This is the institutional focus of concurrent engineering initia-

tives. However, this focus alone will not provide the rapid turn around times essential

for reducing schedule and cost. There is a need for computer-aided solutions as well.

Emphasis on Performance

Conventional processes too often produce systems which are obsolete before they are

fielded. A primary cause is that technical program managers and engineers are lured

4

= =

i

w

w

w

w

into giant leaps which attempt to solve all problems at once. As a result, reuse of pre-

vious work is very difficult and the goal of building systems out of pre-existing systems

can not be met. In compute-bound applications such as digital radar, target tracking,

and automatic target recognition (ATR), this tends to lead toward the production of

systems that are obsolete before they are fielded.

Tools lag behind state-of-the-art components. When engineers attempt to incorporate

state-of-the-art technology in their designs, the available tools support is frequently

obsolete. Libraries do not contain new product descriptions. Any attempts to translate

work products from one tool to the next are error-prone.

Engineers working within the conventional development process do not always have on-

line access to the results of various trades (e.g., hardware architecture trades, software

architecture trades, software performance, operating system performance). Denied

access to on-line libraries, these engineers must repeat trades from scratch.

Control Rather Than Observation of Progress - Paper-only validation

Management can not directly observe development and hence institutionalizes control

regimes which take on a life of their own. Unfortunately, in using these "arm's length"

regimes, the best efforts of interested observers may fail to get at the real requirements

that often can only be accurately stated when end-users have the opportunity to in-

teract with actual system implementations. A key reason for end-user disappointment

with a product is that during the long development cycle, these end-users receive in-

complete information on how the system will perform; once field and acceptance testing

begins, they can be "surprised".

User-centered Continuous Process Improvement We have attacked these problems

by establishing and defining more efficient processes and by utilizing advanced tool technol-

ogy to empower engineering. Figure 2 illustrates the evolutionary nature resulting change.

People can initiate change from modifications at any point in the diagram. Thus a change to

the Design Environment (e.g., new tools and software environments) creates tools that capture

and manipulate new Information which in turn helps engineers to select specific Architectures

and enable creation of Reusable Products whose development Methodology drives the need

for modifications to the Design Environment. The diagram can be read as well starting at

any other point on the circle. The impact of tools on process, suggests that we consider any

recommendations in two waves:

• Policies and procedures for today - given a specific design environment maturity, what

are the best methodologies for system development today? For example, we may

choose to continue with some control-oriented practices because the requisite groupware

technology is not available for enabling observation-oriented improvements.

5

= -

Design
Environmenl

es

creates

captures

Information

suppo_s

Jre_

.." . •

Figure 2: The process/tool dynamic: User-centered adaptation of environments, information,
architectures, and methodology

= =

w

W

U

w

6

• Future directions - how do we transition to moreautomated processes- more expres-
sivepower in modeling and simulation capabilities,effectivereuse,improved synthesis
methods,automatic design?

We start in Section2 with a case study of a small effort emphasizing progress that is possible

when we take prescriptive steps to avoid the above mentioned pitfalls. Section 3 presents a

vision of the future (i.e. a likely scenario within the next four to five years). Then in Section

4, we support this position with our experience and observations about prevailing trends.

Section 5 describes issues for tools and tool environments. Finally, in Section 6 we make

several specific recommendations for process improvement within the tool/process dynamic.

_z
u

w

m

w

w

w

W

2 AIPS: A Case Study in Rapid Development

AIPS is a completed initiative which illustrates the opportunistic use of development tools,

the employment of a flexible process flow, and the advantages of virtual prototyping. In this

1991 project, RDG fully implemented a radar pulse feature extractor system in less than six

months. The system's sponsor required an advanced system operating at the 50MHz rate.

An existing prototype board running at 12.5 MHz demonstrated needed functionality, but

could not keep up with the required data rates. To bootstrap the effort, the sponsor furnished

a real world data set useful for validating designs, an interface specification document, and

only the schematic for the prototype board. Hence, RDG faced a severe reverse engineering

task. In addition, scheduling constraints were very tight. The sponsor needed to have a

fielded system within nine months. Final testing would only be possible when the system

was integrated in the field.

During the first three months of the effort, RDG worked with sponsor system engineers to

explore possible ECL, ASIC, and FPGA solutions. The tight schedule was a major concern.

While ECL and ASIC solutions could achieve the needed speed, they presented a serious

design risk: the commitments made would have to be right, since there would not be time

to start over again. While size might need to be increased with an FPGA approach and

timing would not be optimized, this solution would adjust to changing requirements or

design miscalculations. Results of the analysis were not conclusive, but RDG opted for the

FPGA approach to minimize program risks.

w

w

Opportunistic Tool And Process Selection The engineers were well aware of the need

for critical point solution tools to achieve system goals. Figure 3 shows a subset of the tools

that were available on our Sun platforms. Although the tools were not all tightly-coupled

(i.e., within a unified framework), file-level transfers of information were easily accomplished.

RDG had considerable experience with all the tools and an awareness of the challenges

L ")

Work package justification

Algorithm Development

Analysis

Translation

Simulations, netlist

Word & graphics processing

- MacProject

- Matlab

- XACT

- XNF2WlR

- Viewlogic

- Framemaker

=

=

_J

Figure 3: A partial system development environment

associated with mixing manual and semi-automatic efforts to push through a design and

implementation within the remaining six months.

First, RDG generated a work package justification. MacProject, an automated project sched-

uler, was used to set up the program schedule. Figure 4 presents this initial schedule (the

white boxes) and a snapshot of program completeness (the percentages complete illustrated

with the black boxes). In order to put the schedule together, our engineers interacted by

phone with component and tool vendors. RGD needed to be sure that FPGA simulations

would give reliable results at the 50MHz rate.

Next in an architectural analysis step, RDG investigated the possibility of a multi-board

solution. This approach would provide fault-tolerance and required throughput, since a

multi-board system could route input to parallel boards running at less than the 50MHz

rate. The architectural analysis effort was performed with paper and pencil, white board

and marker. Since the overall program was in demonstration/validation phase, the sponsor

agreed that adding the additional boards and trading size for performance was a valid option.

Clearly, this is not always the case. But a lesson to be learned is that every job has such

opportunities that can be exploited - if design environments and methodologies are flexible.

Following the architectural analysis, RDG initiated two efforts in parallel. In the first effort,

they reverse engineered the prototype schematic to capture functionality in Matlab, an algo-

rithm development tool. By running Matlab scripts on the real data, RGD discovered that

8

i

E_

W

U

E
E

w

W101111 Ik'24_il

Figure 4: Project Schedule Example

some threat situations were not properly characterized by the original data sets. By going

back to the sponsor and demonstrating algorithm functionality, RDG was able to converge

on a new specification which more accurately reflected real world environments.

At the same time, RDG began the process of allocating functionality to the multi-board

configuration. RDG used the simple box and arrow drawing capabilities of a word processor

to capture design choices.

w

W

Virtual Prototyping Having chosen':a baseline, RDG started down two independent

paths to speed up overall design time. In one, engineers used XACT tools to describe and

analyze the FPGAs, and in the other, engineers used Viewlogic tools to generate simulations

for the boards. While there was no on-line traceability between the functional allocation, the

Matlab scripts, and the schematic, RDG bootstrapped construction of the board schematic

by purchasing and integrating vendor models. The two independent design efforts were

automatically linked through Xilinx's XNF2WIR which translates XACT FPGA descriptions

to Viewlogic format. The resulting Viewlogic description is an example of a virtual prototype,

an executable model made up of a mixture of hardware or software fragments.

By using the virtual prototype, RDG identified errors in the external interface sp'ecification.

The specification incorrectly set the number of clock cycles for the handshaking protocol

between the platform control system and the signal processing subsystem. RDG used the

9

=4

r .
w

w

J

virtual prototype to demonstrate the problem to the sponsor and this helped convergence

on an improved interface specification.

Progress continued as RDG used Viewlogic tools to generate board layout placement. This

placement needed to be checked for thermal required data rates. While analysis tools were

available and might have been helpful at this point, RDG weighed the cost and schedule im-

pact of tool acquisition and training against the value-added to the program. The engineers

could not justify utilizing these tools. Rather, RDG relied on manual inspections. Clearly,

more automated verification would have been desirable, but this was not a justifiable option

given other development constraints.

When the analysis was completed, RDG electronically sent Viewlogic-produced netlists to a

board fabrication vendor. When the completed boards were received at Lockheed Sanders,

our operations department manually assembled them using RDG's schematic. Each board

was individually tested first at 33MHz (a sufficient rate to meet performance requirements

using four boards) and then at 50MHz (the desired target rate for a single board). Finally, the

sponsor placed the boards in the fielded system. While our system had met its acceptance

test criteria, the sponsor discovered that they had a problem: the AIPS system did not

correctly identify the features for an unanticipated class of pulse train types.

The Payoff for Virtual Prototypes RDG needed to find a way to identify and fix the

problem. Fortunately, the control system captured data at the entry and exit points of

the AIPS subsystem and RDG was able to run this data through the virtual prototype.

This identified the problem as an inappropriate threshold setting and RDG used the virtual

prototype to isolate the problem. This step by itself justified our choice of FPGAs. Engineers

found a modification entry point only slightly upstream from the point at which the error

was discovered. Using XACT, RDG created new PROMS which reprogrammed the FPGAs

and sent these PROMS to the sponsor for a successful upgrade of the fielded system.

In summary, the key points to the AIPS initiative included:

• The use of an integrated suite of development tools

• A very flexible approach to requirements acquisition

• The development of a virtual prototype

w

w

3 A Vision for the Future

Figure 5 illustrates several key features of the typical flow of design information in a fu-

ture scenario. Much of the process flow mirrors that of the AIPS effort, but the design

10

:+ ,. £

m

u

,

,°°

Engineer Decisions

• Select Off-lhe-Shelf Components
• Follow Architectural Pdndples

• Use of Reconfigurabte

DescriplJon of System Behavior

r

n

L

mml

r--_

m==,

lira=;

=

Component Description

Library of
Product Descriptions

Evolving System Description

Figure 5: Flow of design information

environment has dramatically shifted the operating point toward more effective machine-

mediation. Engineers work from statements of need, mission descriptions, conditions in the

environment of the proposed system, requirements for new systems or perhaps descriptions

of existing systems which are targeted for upgrade. As a first step, the engineer identifies

an appropriate tool set for handling the design and development. This tool set may contain

a system engineering requirements capture and traceability tool, a software modeling tool,

and a hardware schematic capture environment. Since the design environment is tool inter-

operability-centered rather than centered on specific CAD tools or frameworks, the engineer

will mix and match tools to optimize engineering performance. Many of the selected tools

will be available on a "fee per use" basis. That is to say, rather than making outright pur-

chases of tools, companies will pay vendors for time spent in utilizing the tool. Importantly,

this technology lowers the entry cost for both developers and tool vendors, and "with more

players in the field we envision a dramatic increase in the rate of innovation.

As a first design step under machine-mediation, a system engineer and an applications expert

check plausibility of the requirements. This analysis is based on on-line access to application-

specific design rules and extensive databases of related reusable designs. In most cases, the

engineers find systems with very similar requirements descriptions and they quickly assem-

ble pre-existing module descriptions to bootstrap early simulations and basic algorithmic

flow. The engineering staff creates a virtual prototype which they present (either on-site

or over the network) to a sponsor. The sponsor will be able to run simulations and record

11

i

t

L .

F o

u

observations and concerns in the active project database. For many application, engineers

or sponsors will insert such simulations in distributed (i.e., with players located around the

country) simulations. This cycle will be repeated over and over again as initial virtual proto-

types crystallize into high fidelity simulations and then to mixes of real hardware-in-the-loop

combined with some simulated pieces.

As the design proceeds, the design environment provides immediate feedback to engineers

on the life cycle ramifications of their decisions. Specific warnings are provided when a

decision dramatically impacts a life cycle cost. For example, the use of a non-standard

interface will adversely effect reuse and upgrade potential. Similarly, the overloading of a

module may result in matched-pair packaging (i.e., coordinating the production of two or

more boards which are intended to be fielded in tandem) which drives up production and

field supportability costs. Hence, engineers will be able to perform on-line trade studies on

implementation technologies. The trade-off between performance, throughput power, cost-

centered development schedule, development time, development cost, and life cycle cost will

result in early realization of near optimal designs.

The use of detailed design rules will ensure a smooth transition to producible and easily field-

able systems. Engineers will express system descriptions in an architectural format which

is tightly coupled (i.e., maximizes the potential for automatic synthesis and traceability) to

implementations and is "reuse-oriented". Through this process, engineers will employ a spe-

cific reusability methodology to place new designs into the databases, thereby bootstrapping

the next effort.

4 Our Approaches To Process Improvement

In this section, we briefly describe some standard engineering practices and then focus on

areas where we have demonstrated substantial capabilities beyond conventional approaches.

4.1 Standard Practice

m

Figure 6 provides a top level view of engineering activities Engineers acquire requirements

directly from discussions with end-users or through sponsor-authored documents. Engineers

then line up appropriate data sets, extant or emergent algorithms, feasibility studies, and

trade-off studies. They produce refined requirements which give sponsors confidence that

the right solution will be built. They generate algorithmic formulations and top-level designs

which are used to initiate downstream design, manufacture, and deployment. Additionally,

they identify the real world data and synthetic scenarios necessary for conducting down-

stream system verification.

12

v

=

m

w

User Feedback

• Refined Requirements

"Documentation

• Validation

Requirements
• Function

• Performance

• Power, Size
"R&M

• Interfacing

,,o

Data Sets

• Training Data
• Test Data

• Data Models

System
Analysis

Constraints

Algorithm Architectural

Development Deftnition

Algorithmic
Formulation

i:op-Level Design

HW/SW Partitioning

Test Procedures

•Real-world data

"Syn_etic scenarios

Figure 6: System Engineering Activities

Initially, engineers place considerable emphasis on estimations. Decisions are made based on

best guesses. Real system behavior only emerges as system prototypes are built and evaJu-

ated. The process can best be described as a "steering" through the design space avoiding

known obstacles and pitfalls. Most of system engineering is performed at the start of the

system life cycle but system engineers anticipate and participate in downstream phases as

well - manufacturing, verification, deployment, training, operational effectiveness, support,

upgrades, and disposal. System engineers must analyze requirements, identify appropri-

ate algorithms, and define a system architecture (including allocation of responsibility to

software, analog hardware, signal processor, and embedded processor components).

m

_md

m

4.1.1 Challenges for System Analysis

System analysis is the process of describing system functionality and managing constraints,

but avoiding premature commitment to particular implementations. Engineers match func-

tional and nonfunctional (e.g., performance, power, size, reliability) requirements against

known system and component capabilities. Since the process today is largely informal, it is

very difficult for engineers to avoid duplication of work (e.g., re-doing back-of-the-envelope

trade-off calculations, re-inventing architectures and design solutions) or creating errors in a

descriptions. Even well thought out specifications may contain missing references, ambiguous

terminology, and other forms of inconsistency.

13

m

s

4.1.2 The Products

Engineers produce textual requirements documents, describing the characteristics of the

system to be built. However, such documents are themselves but a means to achieve a

more fundamental goal, namely communication of requirements to engineers and sponsors

(end-users, procurement agents, etc.) and sponsors in related systems. In fact engineering

media - diagrams, outlines - used along the way toward producing a written document

can be extremely informative. Virtual prototypes are another useful product, both to help

communicate requirements and to validate the accuracy of those requirements.

F ,

a •

4.2 Process Improvements

4.2.1 Making upgrade explicit: Working with Families of Systems

One aspect of rapid development goals is the use of up front requirements for entire fam-

ilies of systems. In this view, requirements are not developed from scratch and thrown

away. Rather, engineers continually look for opportunities to reuse requirements from other

systems or classes of systems, and to organize their requirements in such a way that they

might be usable for system upgrades and reusable on future projects. These requirements

provide a baseline for subsequent development and upgrades independent of specific hard-

ware/software solutions. That is to say, we recognize and plan on solutions that will change

considerably with time as new technology becomes available and/or the operating point for

person/machine interaction shifts toward higher degrees of automation.

4.2.2 Technologies for eliminating isolated design

Complex systems are extremely detailed and work must be divided among multiple engineers.

However, a balance must be struck between coordinated and independent work of engineers.

Not all engineered artifacts are like program modules, that can be handed off to independent

coders to implement. There is inevitably significant overlap between them. They may share

a significant amount of common terminology between them and information expressed in

one functional area may have impact on other functional areas.

Although consistency is an important goal for the process to achieve, it cannot be guar-

anteed and maintained throughout without forcing engineers to constantly compare their

descriptions against each other. Therefore, consistency must be achieved gradually, at an

appropriate point in the development process. Nevertheless, it may not be possible to rec-

ognize all inconsistencies within a system description. One cause of inconsistency is the

employment of multiple models. For example, when engineers specify radar processing re-

14

L .

m_

quirements they must model the dynamics of aircraft motion to make sure that the system

is able to track aircraft under normal maneuver conditions. When specifying flight plan

monitoring, however, they can assume that aircraft will move in straight lines from point to

point, and change direction instantaneously, since the time required for a maneuver is very

short compared to the time typically spent following straight flight paths.

We have investigated structuring mechanisms that alleviate communication problems during

requirements development. Our approach to this issue has been to work on machine-medlated

ways to support separation and subsequent merging of work products, rather than to force

engineers to constantly coordinate whenever an area of potential common concern is identi-

fied. By explicitly controlling the degree of sharing between different parts of the data, we

lessen the risk of misinterpretation. Reuse of requirements fragments is facilitated, without

inadvertently introducing information that is in conflict with each engineer's conception of

the problem. This technology is described in Section 5 below.

4.2.3 Iterative Development - Substantial sponsor/contractor interaction

A third aspect is the commitment to iterative development. Iterative development involves

managing system decomposition, incremental attack on requirements issues, and the use of

flexible technologies with explicit upgrade paths. For example, engineers might employ an

FPGA solution initially with an intention of building the final system as an ASIC module.

To use iterative development, only a portion of the system goes through the iteration at a

time. That is to say, engineers make explicit choices about how they will iteratively add

more and more capability. For example, on a first pass, engineers might demonstrate that

system throughput requirements can be achieved while assuming additional requirements for

built-in-test, fault tolerance, design modularity can be ultimately resolved. For each itera-

tion, more functionality is added to the existing system. In our experience, there generally

are three to six such iterations which last two to four months each. Design activities are

performed to constrained subsets of the eventual system requirements. The scope of each

iteration gradually widens as the program matures, and various design fragments are tied

together.

4.2.4 Virtual prototyping and/or executable requirements

!

Rapid development technology enables the end-users to exercise system behavior and flesh

out a good set of requirements. The methodology of allowing for a series of validation

steps during the development process, progressing from a skeletal implementation to finished

product in highly observable steps is essential for validation. A byproduct of such validation

steps is that the need for expensive "paper" control is lessened.

w

--z

w

15

4.2.5 Reuse

t
_S

Engineers can reduce development time by using existing requirements, design and imple-

mentation fragments. We have approaches this important component of rapid development

in two ways:

• Ad hoc Reuse

RDG has had good success with ad hoc reuse such as accessing appropriate hardware

or software descriptions and tools over the internet. The available software, includ-

ing compilers, graphics packages, and editors is often of high quality due to the large

number of users. These ad hoc approaches rely heavily on "word of mouth" among

expert developers for success. We are finding that retrieval issues are not significant

despite a lack of formalized trappings around each fragment. This approach is partic-

ularly successful for large relatively self contained software packages with well-defined

functionality (e.g., an object-oriented graphics package).

Scalable modular architectures for reuse

In addition to the above abstract work to providing "reusability order" to system

requirements, we have worked on defining scalable modular hardware and software

architectures which specifically trade performance for reuse and upgrade potential.

Once a processing approach is validated for a particular application, in subsequent

design iterations it can be scaled up (if greater functional performance is required from

newly available technology) or down (if size, weight, or power reductions are called

for). At the same time, we conduct field demonstrations with a system design which

is functionally identical but, perhaps, not form and/or fit replaceable with the final

product.

._ ±

w

m

In summary, we have developed technology which can improve the coordination of multiple

engineers (perhaps representing multiple disciplines) and we have demonstrated the effec-

tiveness of rapid prototyping methodologies which overcome some of the common pitfalls of

conventional large team engineering.

5 Design Environment Issues

In this section, we will examine some general themes for amplifying engineer performance

with software tools and environments. Our goal is to both provide specific recommendations

for tool/environment selection or realization and to investigate some emerging trends that

promise to dramatically change engineering processes.

16

m_

r_

w

u

: 7

An appraisal of supporting computer tools is an important piece of the overall technology as-

sessment. Our AXLES work demonstrates that with emerging technology in place, significant

change occurs in the following four areas:

• Engineers work with on-line multiple visualizations of complex system descriptions,

greatly increasing their ability to understand and manipulate system artifacts (e.g.,

requirements, simulations results, software and hardware implementations).

• Engineers effectively reuse requirements fragments within entire families of develop-

ments.

Synthesis and validation based on hybrid combinations of reasoning mechanisms greatly

improve productivity and catch requirements errors. Rapid prototyping and virtual

prototyping based on initial partial descriptions helps reduce the errors and brings down

the cost of subsequent development. Additional consistency checking, propagation of

the ramifications of decisions, and requirements critiquing all play a role in assisting

in the development of reliable systems.

Engineers evolve descriptions in a controlled fashion. Change is inevitable, but en-

gineers are able to rapidly respond to changing requirements and replay previous re-

quirements evolutions.

We will pick up these themes again in the sections which follow.

!

m
5.1 Requirements for Environments

Key components are support for heterogeneous tools, local and remote electronic access

to engineering data, dynamic cost and schedule models to support program management,

libraries of reusable hardware and software components, and flexible access to standard

hardware and commercial software integrated via standards.

w

5.1.1 Heterogeneous tools

It is essential for the design environment to be both open and heterogeneous. By open,

we mean that the environment permits the integration of any commercially available tools

suited for use in a phase of the development. By heterogeneous, we mean that multiple

hardware and software development tools (e.g., hardware synthesis, compilers, document

production, spread sheets, project management support, requirements traceability) are con-

currently supported by the environment, and that there are display terminals which can

17

= _

m

r

m

N_d_hm Ham_m
Ded_ _ I:_d__¼tion

lm I Im I

Acceptanc Software
Test Design
Procedure

velopment

AJgorithm
Design Functional

,NmuU,_n

Functi_l "

Slandlrd Data S1and_d data
ASICJFPGA Inten:hlnge Inton::hm'_ge
D._gn

[_I : M_._
Schemal_c, • Module
Moduleand ' Vendors

_:,a_yout rooooo ol

Prinl_l Circuit
Vwxlors

Test Equipment

Illll
Board Test and
System Inlegmtion

rlbr_llmn Int_mtbn led
Test

Figure 7: A typical integrated development environment

access any software application running on any of the host hardware platforms form a single
location.

The collection of commercially available tools for supporting engineering processes is growing

rapidly and what we work with today may be only the "tip of the iceberg" for what is

possible. As new tools are introduced we need to consider how they will be used within

existing informal or computer-realized development environments. While the development

(or re-implementation) of a tightly integrated solutions is sometimes feasible, from practical

considerations we seldom have the luxury to rebuild and tightly couple existing tools. As

illustration, Figure 7 shows the Lockheed Sanders integrated development environment that

is based on these principles.

Product standards such as PDES will help with tool inter-operability. However, no single

description can be expected to handle the intricax:ies of multiple domains. Individual problem

solvers may make use of idiosyncratic knowledge that need not be shared with other problem

solvers. This position is consistent with recent work on knowledge-sharing (e.g., [8]). We

need sharable vocabularies which convey enough information without requiring it to be the
union of all the internal vocabularies of the individual tools.

w

18

L_

w

m

5.1.2 Easy Access to Information

Substantial on-line data for making design and development decisions is readily accessible

today, but it is can not always be cheaply and quickly obtained, nor can it be applied at the

right places. The entire system development process needs to be much more open than is

the case today. For example, sponsors should be empowered to interact with and control the

development because they will have access to substantial amounts of data on how a system

will perform and on what options are available for development. In like manner, engineers

should have access to manufacturing and vendor products and models. Links need to exist

to proprietary and legacy design files so that engineers can economically integrate data into

their own work space. This easy interchange of design information within and across families

of systems is the key to effective reuse.

Concurrent engineering goals can be met through interactive computer models for production

and support costs (and other life-cycle dominant concerns). These models need to be coupled

closely to the engineers' design database. Reflecting life-cycle-cost, power, weight and other

inputs back to algorithm engineers, and system implementors is essential for high quality

design activity.

On the ARIES project, we focused our own technology investigations on requirements reuse.

The primary units of organization are workspaces and folders. Each engineer has one or

more private workspaces -- collections of system descriptions that are to be interpreted in

a common context. Whenever an engineer is working on a problem, it is in the context of

a particular workspace. Each workspace consists of a set of folders, each of which contains

formal and/or informal definitions of interrelated system terminology or behavior. Engineers

can use folders to organize their work in such a way that they share some work and keep

some work separate.

The folders can be used to maintain alternative models of concepts, which engineers may

choose from when constructing a system description. Each model is suitable for different

purposes. An engineer selects folders by building a new folder that uses the folders containing

terminology he or she is interested in. Capabilities are provided for locating concepts in

related folders, and linking them to the current folder.

As illustration, within the ARIES project, we created a library of domain and requirements

knowledge is subdivided into folders. The ARIES knowledge base currently contains 122

folders comprising over 1500 concepts. These concepts include precise definitions of concepts,

as well as excerpts from published informal documents describing requirements for particular

domains, e.g., air traffic control manuals.

19

m

5.1.3 Remote Access to Information

Several issues must be addressed for achieving remote access to information. In addition to

basic infrastructure there are issues of centralization of both data and control.

Centralization of Data: By centralizing data, we ensure that tools have a consistent view

of the information shared by all. In a concurrent engineering application, this repository

holds the evolving agreed-upon description of the system under design.

The existence of a centralized repository does not imply centralization of all or even most of

the data. Each engineer may have a private workspace containing information which may

or may not be shared with others in the course of a development.

M

r

l

Centralization of Control: Centralized control can lead to bottlenecks [11]. Concurrent

engineering problems require decentralized solutions. Computerized tools must run on sep-

arate processors co-located with the engineering staffs they support - perhaps at geographi-

cally distributed sites. These tools must communicate results over computer networks; hence

questions about controlling the extent of communication and ensuring current applicability

of information are very important.

Some tools may uniquely take on moderator-like responsibilities such as archiving informa-

tion and nudging a development group to make progress.

5.1.4 Examples of Technology

The next paragraphs briefly examine some innovative technologies that may make significant

contributions to our development environments.

semistructured Messages: Often engineers recognize that they are moving into "un-

charted territory". They are uncomfortable about making a design commitment because

they know it could lead to problems downstream. For example, a engineer would know

that a non-standard chip size might create downstream problems. When a design calls for

an oversized chip, the chip might easily popping off a board. Similarly, an undersized chip

might be difficult to test. If experts are easily identified within an organization, the area

of semistructured messages [10] can be very beneficial. For example, the engineer could

enter a semistructured message such as "need ADVICE on impact of CHIP SIZE in MANU-

FACTURING and TEST" and be guaranteed that the message would be routed to someone

knowledgeable about the impact of chip size. This would perhaps initiate a dialog and would

2O

m

w

m

L

LJ

lead to a solution in a timely fashion. Note that the message does not identify the message

recipient (or recipients). It is the responsibility of the machine to determine this information

from keywords in the message. The technical challenge lles in developing a -specific vocabu-

lary that can be used for the semistructured messages. The strength of this approach is that

it is an small incremental step beyond current communications protocols (e.g., distribution

lists in email, news subscriptions) and hence is easily achievable. The weakness of the ap-

proach is that it relies totally on the ability of engineers to be sensitive to potentially costly

design decisions.

Concurrent Engineering Support: At RPI, an emphasis has been placed on using

object-oriented database technology to control concurrent editing of evolving designs. They

are working on the problems of partitioning design data into coherent units to which changes

can be applied and for which versions can be associated with different versions of the total

design. The Palo Alto Collaborative Testbed (PACT) [2] integrates four extant concur-

rent engineering systems into a common framework. Experiments have explored engineering

knowledge exchange in the context of a distributed simulation and redesign scenario. The

strength of these approaches is that they address coordination aspects of multi-user problem

solving. This focus is significant for managing interactions in large organizations. Smaller

more focused teams will shift the design bottleneck more toward unrecognized impact aware-

ness and less toward missing information from team members.

Process Modeling Another approach builds symbolic models of some aspect of an enter-

prise or process. These models serve as the glue which holds a suite of tools together. For

example, enterprise integration has largely focused on symbol models of the manufacturing

environment. Individual nodes in these models, might serve as personal assistants for people

in-the-loop or might carry out some tasks (e.g., a task on the manufacturing floor) them-

selves. One example of this work is MKS [9], a framework for modeling a manufacturing

environment. Their emphasis has been on creating computerized assistants (i.e., small mod-

ular expert systems) which can interact directly through a dedicated message bus or through

shared databases. At MCC, a CAD Framework initiative [1] provides tool encapsulation (i.e.,

creating a layer of abstraction between tool and user), task abstractions, design tracing, and

process placement and control in a distributed, heterogeneous computing environment. It

has been used for compiling and linking a large CAD tool composed of approximately 300

modules. A number of systems use a planning metaphor for modeling a process. For ex-

ample, ADAM [6] unifies a number of design automation programs into a single framework.

The focus is on custom layout of integrated circuits. ADAM handles design decisions at

a very course grain level. It plans activities and resources to be used and determines the

parameters for each tool invocation. It then relies on the tools acting intelligently in concert

even though little information is passed between them. Recent USC work has focused on

synthesis from VHDL behavior level down to netlists for input to place and route tools.

21

m

m

L_

.=_

--=

m

In the software development arena, plan recognition techniques [4] have been used to plan

and execute sequences of commands using knowledge of process actions. In this "assistant"

approach, programmers supply decisions which are beyond the scope of the machine assistant.

5.2 Requirements for Tools

Tools can address either direct productivity-oriented (e.g., synthesis which transitions be-

tween levels of abstraction - specification to design, data flow to ASIC, high level language

code to machine code) or evolution-oriented (i.e., manipulation of information without chang-

ing abstraction level) needs.

While computer-aided software engineering (CASE) promises substantial improvements and

while considerable activity goes on in the research community, substantial portions of engi-

neering has not yet benefited in significant ways. Tools have limited notations for expressing

complex system concerns. For the most part tools have their origins in methodologies for

software design and do not adequately cover full life-cycle considerations. Moreover point

solutions for specific tasks (e.g., reliability analysis, maintainability analysis, availability

analysis, behavioral simulation, life cycle cost models) are not well-integrated.

To achieve computer-aided improvements covering all of the above concerns, we need tools

that are additive, have an open architecture, are formally-based, and are designed for evo-

lution support. Tools that are additive allow users to gracefully fall into lowest common

denominator (e.g., simple text editing) environments. Tools that have an open architec-

ture can be tailored to special processes, empowered with domain-specific solutions, and

can be easily extended as technology moves forward. Formally-based solutions allow for

adequate expression of engineering constructs - terminology, behavior restrictions, interac-

tions with the environment. In addition, formal approaches support requirements reuse, and

can effectively produce secondary artifacts (e.g., simulations, trade-off analysis, test plans,

documents) derivable from primary engineering constructs.

5.2.1 Examples of Technology

We briefly mention three areas where there is active investigations that can dramatically

change the ways tools help us with system development.

Design Assistants: Design Assistants take the view that it is possible to automate some

design decisions or at least offer on-line advice on design decisions. The manufacturing

or testing expert is now replaced with a program. The ARPA Initiative on Concurrent

Engineering (DICE) effort contains several examples of this approach. DICE's goal is to

22

createa concurrentengineeringenvironmentthat will result in reducedtime to market, im-
proved quality, and lower cost. The DICE Design for Testability (DFT) Advisor contains
three components. A test specificationgeneratorhelpsengineersselecta test strategy con-
sistent with sponsorrequirementsand project constraints; a test planner finds alternative
ways to test the componentsin a hierarchical design early in the design process;a test
plan assessorusesquantitative metrics for evaluating the test plans. The DICE Designfor
Manufacture/Assembly system is a rule-basedexpert system with several componentsfor
printed wire board design. It advisesboard engineerson manufacturability basedon specific
board geometric and functional requirementsand on assemblybasedon guidelinesand cost
estimation. Our concernswith the designassistantapproachare that it requiresa substan-
tial investment to implement, significant maintenanceis required since the domain is not
stationary, and integration with pre-existingsynthesistools is problematic.

w

r=

v

:_ :?

L

E-
r_

-----:z

Thermometer Displays: The goal of thermometers is to dramatically increase engineer's

awareness of unit cost and life cycle cost. Thermometers display cost, schedule, producibility,

reliability, and supportability estimates for a given partial design. Thermometers address an

important ingredient of the solution; they help to mitigate the downstream cost associated

with uninformed design commitments. Today's engineers have difficulty in giving adequate

consideration to the manufacturing, verification, and support impact of their decisions. The

technology is available for providing engineers with immediate feedback on this impact.

Credit-Blame Assignment Assistance: This approach aims at improving designs by

finding specific flaws and tracing them back to originating decisions which can be retracted

and/or avoided in subsequent design sessions. Domain independent and domain dependent

approaches have been considered.

A domain independent approach is the use of constraint propagation [cite Steele]. Depen-

dency networks keep track of the assertions which lead to some conclusion. If a conflict

occurs, original assertions can be revisited and modified without having to redo computa-

tions having no bearing on the conflict.

The ARIES system contains a constraint propagation system that is used for enforcing non-

functional requirements and for managing mathematical, logical, or domain-dependent engi-

neering interrelationships. Types of nonfunctional requirements include storage (e.g., mem-

ory), performance (e.g.,mtbf, response-time, processing-time, accuracy), physical (e.g, power,

size, weight), and operational-condltlons (e.g., operational-temperatures, corrosivity, antic-

ipated wind-speeds). These properties are higly interrelated and severe requirement errors

occur from overlooking these relationships. A constraint propagation system addresses this

problem by performing local propagation of values and various forms of consistency check-

ing. Propagation occurs bi-directionally through propagation rules connected to nodes in

23

= =
v

constraint networks. An underlying truth maintenance system is responsible for contradic-

tion detection, retraction, and tracing facts back to originating assertions.

This works in the following way. Engineers enter values for various nonfunctional characteris-

tics. The constraint processor uses a constraint network to compute additional characteristics

based on the values supplied by the engineer. The constraint processor detects contradic-

tions between requirements (e.g., 10mhz resolution can not achieved in 40 usec processing

time) and indicates what additional information is required in order to enable the constraint

processor to compute the value of a given characteristic (e.g., "in order to compute positional

error, you need to establish sensor error, sampling rate, and acceleration characteristics of

the aircraft").

It is instructive to contrast this approach to the the thermometers approach. Thermometers

assume uni-directional propagation (e.g., from design parameters to cost). Constraint prop-

agation makes no assumptions about the order or direction of computation, but does require

the availability of underlying formulas or logical dependencies which may not be available

(e.g., while it may be possible to deduce signal resolution from processing-time, one can not

deduce board components from unit cost specification). Our view it that an appropriate mix

of these two notions can provide substantial feedback to engineers on the ramifications of

their decisions.

Domain dependent initiatives have addressed this issue as well. FAD [7] uses information

from earlier VLSI designs to determine resource interactions, perform credit-blame assign-

ments, and determine how early decisions in the previous iteration affect later design deci-

sions and ultimately the resource usage of the solution. These approaches require explicit

knowledge of the connections among parameters.

5.3 Summary of Tools and Environment Issues

The road to achieving increased productivity and well managed efforts follows evolutionary

steps in which careful measurements determine what works and what does not work. This

view is important because without it we miss one of the key ingredients.: We must specifically

create technologies (architectures, methodologies, environments) that are responsive to the

changing technology base both now and into the future.

L

24

w

6 Conclusions and recommendations

_ k

w

w

=

w

m

6.1 Iterative Requirements Refinement

In order to reduce risks, we recommend committing to iterative requirement refinement. The

complexity of the systems we build today makes it almost impossible to acquire requirements

in a vacuum. Ill-composed or misunderstood requirements may lead to specifications and

implementations which do not match end-user needs. By encouraging iterative user/engineer

interaction and by demonstrating system capability even during requirements analysis, we

will develop systems that reflect real end-user needs. It is critical that we balance three things

for successful iterations: using available design fragments (the "State-of-the-Shelf"), rapidly

fabricating interfaces for gluing fragments together, and careful crafting of the requirements

subset that is tackled in a given cycle.

6.2 Life Cycle Cost Awareness

We recommend elevating engineering awareness of the impact on cost, schedule, and risk.

The current practice often ignores these parameters as a form of simplifying assumption -

get a functional description, then retrofit it to meet cost, schedule, risk constraints. This is

the wrong way to simplify. Imposing these constraints early on greatly reduces the design

search space and avoids subsequent errors.

W

E_z

6.3 State-of-the-Shelf Approaches

During the three to four years required to execute the conventional development processes,

the end-users and engineers get locked into system paradigms that are continually based

on emergent technology trends. When engineers respond to stringent system functionality,

performance, and cost restrictions by targeting next generation state-of-the-art technology,

they introduce tremendous uncertainty - inadequate tool and model support, unknown sys-

tem capabilities, and poorly understood requirement interactions. In the past this may have

been the only alternative. However, in today's environment, engineers need to seriously in-

vestigate the availability of on-the-shelf solutions. By considering cost/performance tradeoffs

engineers will be opting for the on-the-shelf solutions.

L_

25

=

6.4 User-centered Tool Selection

The way that many design organizations function also contributes to the cost and schedule

risks of the conventional design process. Organizations may not maintain information on the

current market trends of development support tools. Consequently, either the organization

spends considerable time and effort up front selecting tools and technology, or it uses tools

and technology that have less capability than required. We recommend empowering devel-

opers by making tool selection and investigation an intrinsic part of in-cycle developments.

6.5 Open Heterogeneous Environments

A point solution provided today will not necessarily address the design issues faced in five

years. A single initial vision will not likely accommodate a wide range of future entrants in

the development technology arena. Design environments will need to be truly open and will

need to support a rich mixture of heterogeneous tools.

6.6 Team Composition

We recommend using narrow but deep problem decomposition to eliminate unnecessary com-

munication burdens. RDG has experimented with this approach and found that functions

can be handled by small independent groups who manage the evolving system description

from requirements to implementation. Good interfaces on the developed pieces are critical so

that the group can work independently of other teams. This approach avoids the error-prone

"throw it over the wall" mentality that we often see in top down approaches.

w

6.7 Unified Test Procedures

We recommend unified test procedures for all process phases (e.g., hardware development,

software development, integration, production). Identification of real-world data, validation

and verification questions and scenarios are critical system engineering products and should

be created and linked to system engineering algorithm and architecture commitments.

6.8 Targeting Early Technology Transfer

It very important to begin technology transfer early. Over the years, RDG has worked

extensively with product line efforts within Lockheed Sanders to transition the lessons we

26

= :

= =

L _

w

w

have learned into company-wide process improvement strategies. As one illustration, we

worked with a Lockheed Sanders component of the Patriot program to introduce rapid

validation cycles into their methodology. Success was demonstrated later in the program.

When hardware designers developed the delivered hardware, integrators were able to couple

production-quality software with the real hardware in just a few days. Technology transfer

occurs when technology receivers are motivated (e.g., they can not build a product with

out the process) and they have confidence in the new processes (e.g., key people in an

organization understand, or better, are engineers of new processes)

7 Remaining Tasks

This paper is a partial fulfillment of our specific tasks on the effort. Over the coming months

we will be conducting several related tasks to round out the study. These tasks include the

following:

* The development of a formal Reaction Jet Driver Specification

• A report on tool interoperability issues

• A report on the interplay between application-oriented and market-oriented process

flow

• A high level process diagram.

8 Acknowledgments

This article has grown out of the hard work of many technology developers and hard-

ware/software implementors. We wish to acknowledge the contributions of Dr. Webster

Dove and Dr. Cory Myers who have been instrumental in developing rapid development

approaches. Many of the key aspects that we present follow from their comments and rec-

ommendations. Tony Martuscello provided the information on the AIPS example. David

Campagna, Ken Streeter, and Rob Costantino of RGD have made written contributions and

provided key insights to our investigations. The work on the ARIES project was co-developed

with Information Sciences Institute. Specifically, we wish to acknowledge the contributions

of Dr. W. Lewis Johnson (ARMS principal investigator), Dr. Martin Feather, and Kevin

Benner. Other members of the Attics team included Jay Runkel and Paul Werkowski at

Lockheed Sanders. Additional technical direction was provided by Dr. Charles Rich who

has made a significant impact on all of our knowledge-based initiatives.

27

%

_J

L

w

w

References

[1]

[2]

[31

[4]

[5]

[6]

[7]

[s]

[9]

[10]

[11]

W. Allen, D. Rosenthal, and K Fiduk. The mcc cad framework methodology manage-

ment system. 28th A CM/IEEE Design Automation Conference, pages 694-698, 1991.

M.R. Cutkosy, T.R. Gruber, R. S. Englemore, W.S. Mark, R.E. Fikes, J. M. Tenenbaum,

M.R. Genesereth, and J. C. Weber. Pact: An experiment in integrating concurrent

engineering systems. Enterprise Integration Technology TR 92-02, 1992.

C. Green, D. Luckham, R. Balzer, T. Cheatham, and C. Rich. Report on a knowledge-

based software assistant. In Readings in Artificial Intelligence and Software Engineering.

Morgan Kaufmann, Los Altos, CA, 1986.

K.E. Huff and V.R. Lesser. The GRAPPLE plan formalism. Technical Report 87-08,

U. Mass. Department of Computer and Information Science, April 1987.

W.L. Johnson, M.S. Feather, and D.R. Harris. Representation and presentation of

requirements knowledge. IEEE Transactions on Software Engineering, 18(10):853-869,
1992.

D.W. Knapp and A.C. Parker. Representation and presentation of requirements knowl-

edge. IEEE Transactions on Computer-Aided Design, 10(7):829-846, 1991.

C.W. Liew, L.I. Steinberg, and C.H. Tong. Use of feedback to control redesign. Pro-

ceedings of the IFIP TC5/WG5.2 Working Conference on Intelligent Computer Aided

Design, 1991.

R. Neches, R.E. Fikes, T. Finin, R. Gruber, R. Patil, T. Senator, and W.R. Swartout.

Enabling technology for knowledge sharing. AI Magazine, 12(3), 1991.

J.Y.C. Pan and J.M. Tenenbaum. An intelligent agent framework for enterprise inte-

gration. IEEE Transactions on Systems, Man, and Cybernetics, 21(6):1391-1407, 1991.

Malone T. W., Grant K. R., Lai K., Rao R., and Rosenblitt D. Semistructured messages

are surprisingly useful for computer-supported coordination. In Irene Greif, editor,

Computer-Supported Cooperative Work: A Book of Readings, pages 311-334. Morgan

Kaufmann, Los Altos, CA, 1988.

R. Wesson, F. Hayes-Roth, J.W. Burge, C. Stasz, and C.A. Sunshine. Network struc-

tures for distributed situation assessment. In Readings in Distributed Artificial Intelli-

gence, pages 71-89. Morgan Kaufmann, 1988.

L

E

28

• _ "-' _ Lockheed Sanders
- ; , ,,

.':..'

.=

.- , --

APPENDIx" C
Rapid Development Approaches for

System Engineering and Design
. a

Final Technical Report

- September 1993

